Transformer

Create Function

Transformers can be either created from the standard type library (create_transformer) or with custom values (create_transformer_from_parameters).

Input Parameters

net.trafo

Parameter

Datatype

Value Range

Explanation

name

string

name of the transformer

std_type

string

transformer standard type name

hv_bus*

integer

high voltage bus index of the transformer

lv_bus*

integer

low voltage bus index of the transformer

sn_mva*

float

\(>\) 0

rated apparent power of the transformer [MVA]

vn_hv_kv*

float

\(>\) 0

rated voltage at high voltage bus [kV]

vn_lv_kv*

float

\(>\) 0

rated voltage at low voltage bus [kV]

vk_percent*

float

\(>\) 0

short circuit voltage [%]

vkr_percent*

float

\(\geq\) 0

real component of short circuit voltage [%]

pfe_kw*

float

\(\geq\) 0

iron losses [kW]

i0_percent*

float

\(\geq\) 0

open loop losses in [%]

vk0_percent***

float

\(\geq\) 0

zero sequence relative short-circuit voltage

vkr0_percent***

float

\(\geq\) 0

real part of zero sequence relative short-circuit voltage

mag0_percent***

float

\(\geq\) 0

z_mag0 / z0 ratio between magnetizing and short circuit impedance (zero sequence)

mag0_rx***

float

zero sequence magnetizing r/x ratio

si0_hv_partial***

float

\(\geq\) 0

zero sequence short circuit impedance distribution in hv side

vector_group***

String

‘Dyn’,’Yyn’,’Yzn’,’YNyn’

Vector Groups ( required for zero sequence model of transformer )

shift_degree*

float

transformer phase shift angle

tap_side

string

“hv”, “lv”

defines if tap changer is at the high- or low voltage side

tap_neutral

integer

rated tap position

tap_min

integer

minimum tap position

tap_max

integer

maximum tap position

tap_step_percent

float

\(>\) 0

tap step size for voltage magnitude [%]

tap_step_degree

float

\(\geq\) 0

tap step size for voltage angle

tap_pos

integer

current position of tap changer

tap_phase_shifter

bool

defines whether the transformer is an ideal phase shifter

parallel

int

\(>\) 0

number of parallel transformers

max_loading_percent**

float

\(>\) 0

Maximum loading of the transformer with respect to sn_mva and its corresponding current at 1.0 p.u.

df

float

1 \(\geq\) df \(>\) 0

derating factor: maximal current of transformer in relation to nominal current of transformer (from 0 to 1)

in_service*

boolean

True / False

specifies if the transformer is in service

oltc*

boolean

True / False

specifies if the transformer has an OLTC (short-circuit relevant)

power_station_unit*

boolean

True / False

specifies if the transformer is part of a power_station_unit (short-circuit relevant).

*necessary for executing a balanced power flow calculation
**optimal power flow parameter
***necessary for executing a three phase power flow / single phase short circuit

Note

The transformer loading constraint for the optimal power flow corresponds to the option trafo_loading=”current”:

Note

vkr_percent can be calculated as follow :

\begin{align*} vkr\_percent &= \frac{P\_cu}{S\_trafo} \cdot 100 \end{align*}
Where
P_cu is the power loss in the copper in kW
S_trafo is the rated apparent power of the transformer in kW

Electric Model

The equivalent circuit used for the transformer can be set in the power flow with the parameter “trafo_model”.

trafo_model=’t’:

../_images/trafo_t.png

sequence = 0:

../_images/trafo_t_zero.png

trafo_model=’pi’:

../_images/trafo_pi.png

Transformer Ratio

The magnitude of the transformer ratio is given as:

\begin{align*} n &= \frac{V_{ref, HV, transformer}}{V_{ref, LV, transformer}} \cdot \frac{V_{ref, LV bus}}{V_{ref, HV bus}} \end{align*}

The reference voltages of the high- and low voltage buses are taken from the net.bus table. The reference voltage of the transformer is taken directly from the transformer table:

\begin{align*} V_{ref, HV, transformer} &= vn\_hv\_kv \\ V_{ref, LV, transformer} &= vn\_lv\_kv \end{align*}

If the power flow is run with voltage_angles=True, the complex ratio is given as:

\begin{align*} \underline{n} &= n \cdot e^{j \cdot \theta \cdot \frac{\pi}{180}} \\ \theta &= shift\_degree \end{align*}

Otherwise, the ratio does not include a phase shift:

\begin{align*} \underline{n} &= n \end{align*}

Impedance Values

The short-circuit impedance is calculated as:

\begin{align*} z_k &= \frac{vk\_percent}{100} \cdot \frac{net.sn\_mva}{sn\_mva} \\ r_k &= \frac{vkr\_percent}{100} \cdot \frac{net.sn\_mva}{sn\_mva} \\ x_k &= \sqrt{z^2 - r^2} \\ \underline{z}_k &= r_k + j \cdot x_k \end{align*}

The magnetising admittance is calculated as:

\begin{align*} y_m &= \frac{i0\_percent}{100} \\ g_m &= \frac{pfe\_kw}{sn\_mva \cdot 1000} \cdot \frac{net.sn\_mva}{sn\_mva} \\ b_m &= \sqrt{y_m^2 - g_m^2} \\ \underline{y_m} &= g_m - j \cdot b_m \end{align*}

The values calculated in that way are relative to the rated values of the transformer. To transform them into the per unit system, they have to be converted to the rated values of the network:

\begin{align*} Z_{N} &= \frac{V_{N}^2}{S_{N}} \\ Z_{ref, trafo} &= \frac{vn\_lv\_kv^2 \cdot net.sn\_mva}{sn\_mva} \\ \underline{z} &= \underline{z}_k \cdot \frac{Z_{ref, trafo}}{Z_{N}} \\ \underline{y} &= \underline{y}_m \cdot \frac{Z_{N}}{Z_{ref, trafo}} \\ \end{align*}

Where the reference voltage \(V_{N}\) is the nominal voltage at the low voltage side of the transformer and the rated apparent power \(S_{N}\) is defined system wide in the net object (see Unit Systems and Conventions).

Tap Changer

Longitudinal regulator

A longitudinal regulator can be modeled by setting tap_phase_shifter to False and defining the tap changer voltage step with tap_step_percent.

The reference voltage is then multiplied with the tap factor:

\begin{align*} n_{tap} = 1 + (tap\_pos - tap\_neutral) \cdot \frac{tap\_st\_percent}{100} \end{align*}

On which side the reference voltage is adapted depends on the \(tap\_side\) variable:

tap_side=”hv”

tap_side=”lv”

\(V_{n, HV, transformer}\)

\(vnh\_kv \cdot n_{tap}\)

\(vnh\_kv\)

\(V_{n, LV, transformer}\)

\(vnl\_kv\)

\(vnl\_kv \cdot n_{tap}\)

Note

The variables tap_min and tap_max are not considered in the power flow. The user is responsible to ensure that tap_min < tap_pos < tap_max!

Cross regulator

In addition to tap_step_percent a value for tap_step_degree can be defined to model an angle shift for each tap, resulting in a cross regulator that affects the magnitude as well as the angle of the transformer ratio.

Ideal phase shifter

If tap_phase_shifter is set to True, the tap changer is modeled as an ideal phase shifter, meaning that a constant angle shift is added with each tap step:

\begin{align*} \underline{n} &= n \cdot e^{j \cdot (\theta + \theta_{tp}) \cdot \frac{\pi}{180}} \\ \theta &= shift\_degree \end{align*}

The angle shift can be directly defined in tap_step_degree, in which case:

\begin{align*} \theta_{tp} = tap\_st\_degree \cdot (tap\_pos - tap\_neutral) \end{align*}

or it can be given as a constant voltage step in tap_step_percent, in which case the angle is calculated as:

\begin{align*} \theta_{tp} = 2 \cdot arcsin(\frac{1}{2} \cdot \frac{tap\_st\_percent}{100}) \cdot (tap\_pos - tap\_neutral) \end{align*}

If both values are given for an ideal phase shift transformer, the power flow will raise an error.

Result Parameters

net.res_trafo

Parameter

Datatype

Explanation

p_hv_mw

float

active power flow at the high voltage transformer bus [MW]

q_hv_mvar

float

reactive power flow at the high voltage transformer bus [MVar]

p_lv_mw

float

active power flow at the low voltage transformer bus [MW]

q_lv_mvar

float

reactive power flow at the low voltage transformer bus [MVar]

pl_mw

float

active power losses of the transformer [MW]

ql_mvar

float

reactive power consumption of the transformer [Mvar]

i_hv_ka

float

current at the high voltage side of the transformer [kA]

i_lv_ka

float

current at the low voltage side of the transformer [kA]

vm_hv_pu

float

voltage magnitude at the high voltage bus [pu]

vm_lv_pu

float

voltage magnitude at the low voltage bus [pu]

va_hv_degree

float

voltage angle at the high voltage bus [degrees]

va_lv_degree

float

voltage angle at the low voltage bus [degrees]

loading_percent

float

load utilization relative to rated power [%]

\begin{align*} p\_hv\_mw &= Re(\underline{v}_{hv} \cdot \underline{i}^*_{hv}) \\ q\_hv\_mvar &= Im(\underline{v}_{hv} \cdot \underline{i}^*_{hv}) \\ p\_lv\_mw &= Re(\underline{v}_{lv} \cdot \underline{i}^*_{lv}) \\ q\_lv\_mvar &= Im(\underline{v}_{lv} \cdot \underline{i}^*_{lv}) \\ pl\_mw &= p\_hv\_mw + p\_lv\_mw \\ ql\_mvar &= q\_hv\_mvar + q\_lv\_mvar \\ i\_hv\_ka &= i_{hv} \\ i\_lv\_ka &= i_{lv} \end{align*}

net.res_trafo_3ph

Parameter

Datatype

Explanation

p_a_hv_mw

float

active power flow at the high voltage transformer bus : Phase A [MW]

q_a_hv_mvar

float

reactive power flow at the high voltage transformer bus : Phase A [MVar]

p_b_hv_mw

float

active power flow at the high voltage transformer bus : Phase B [MW]

q_b_hv_mvar

float

reactive power flow at the high voltage transformer bus : Phase B [MVar]

p_c_hv_mw

float

active power flow at the high voltage transformer bus : Phase C [MW]

q_c_hv_mvar

float

reactive power flow at the high voltage transformer bus : Phase C [MVar]

p_a_lv_mw

float

active power flow at the low voltage transformer bus : Phase A [MW]

q_a_lv_mvar

float

reactive power flow at the low voltage transformer bus : Phase A [MVar]

p_b_lv_mw

float

active power flow at the low voltage transformer bus : Phase B [MW]

q_b_lv_mvar

float

reactive power flow at the low voltage transformer bus : Phase B [MVar]

p_c_lv_mw

float

active power flow at the low voltage transformer bus : Phase C [MW]

q_c_lv_mvar

float

reactive power flow at the low voltage transformer bus : Phase C [MVar]

pl_a_mw

float

active power losses of the transformer : Phase A [MW]

ql_a_mvar

float

reactive power consumption of the transformer : Phase A [Mvar]

pl_b_mw

float

active power losses of the transformer : Phase B [MW]

ql_b_mvar

float

reactive power consumption of the transformer : Phase B [Mvar]

pl_c_mw

float

active power losses of the transformer : Phase C [MW]

ql_c_mvar

float

reactive power consumption of the transformer : Phase C [Mvar]

i_a_hv_ka

float

current at the high voltage side of the transformer : Phase A [kA]

i_a_lv_ka

float

current at the low voltage side of the transformer : Phase A [kA]

i_b_hv_ka

float

current at the high voltage side of the transformer : Phase B [kA]

i_b_lv_ka

float

current at the low voltage side of the transformer : Phase B [kA]

i_c_hv_ka

float

current at the high voltage side of the transformer : Phase C [kA]

i_c_lv_ka

float

current at the low voltage side of the transformer : Phase C [kA]

loading_percent

float

load utilization relative to rated power [%]

\begin{align*} p\_hv\_mw_{phase} &= Re(\underline{v}_{hv_{phase}} \cdot \underline{i}^*_{hv_{phase}}) \\ q\_hv\_mvar_{phase} &= Im(\underline{v}_{hv_{phase}} \cdot \underline{i}^*_{hv_{phase}}) \\ p\_lv\_mw_{phase} &= Re(\underline{v}_{lv_{phase}} \cdot \underline{i}^*_{lv_{phase}}) \\ q\_lv\_mvar_{phase} &= Im(\underline{v}_{lv_{phase}} \cdot \underline{i}^*_{lv_{phase}}) \\ pl\_mw_{phase} &= p\_hv\_mw_{phase} + p\_lv\_mw_{phase} \\ ql\_mvar_{phase} &= q\_hv\_mvar_{phase} + q\_lv\_mvar_{phase} \\ i\_hv\_ka_{phase} &= i_{hv_{phase}} \\ i\_lv\_ka_{phase}&= i_{lv_{phase}} \end{align*}

The definition of the transformer loading depends on the trafo_loading parameter of the power flow.

For trafo_loading=”current”, the loading is calculated as:

\begin{align*} loading\_percent &= max(\frac{i_{hv} \cdot vn\_hv\_kv}{sn\_mva}, \frac{i_{lv} \cdot vn\_lv\_kv}{sn\_mva}) \cdot 100 \end{align*}

For trafo_loading=”power”, the loading is defined as:

\begin{align*} loading\_percent &= max( \frac{i_{hv} \cdot v_{hv}}{sn\_mva}, \frac{i_{lv} \cdot v_{lv}}{sn\_mva}) \cdot 100 \end{align*}