Transformer

Create Function

Transformers can be either created from the standard type library (create_transformer) or with custom values (create_transformer_from_parameters).

pandapower.create_transformer(net, hv_bus, lv_bus, std_type, name=None, tp_pos=<Mock name='mock.nan' id='140428840819960'>, in_service=True, index=None, max_loading_percent=<Mock name='mock.nan' id='140428840819960'>, parallel=1)

Creates a two-winding transformer in table net[“trafo”]. The trafo parameters are defined through the standard type library.

INPUT:

net - The net within this transformer should be created

hv_bus (int) - The bus on the high-voltage side on which the transformer will be connected to

lv_bus (int) - The bus on the low-voltage side on which the transformer will be connected to

std_type - The used standard type from the standard type library

OPTIONAL:

name (string, None) - A custom name for this transformer

tp_pos (int, nan) - current tap position of the transformer. Defaults to the medium position (tp_mid)

in_service (boolean, True) - True for in_service or False for out of service

index (int) - Force a specified ID if it is available

max_loading_percent (float) - maximum current loading (only needed for OPF)

OUTPUT:
trafo_id - The unique trafo_id of the created transformer
EXAMPLE:
create_transformer(net, hv_bus = 0, lv_bus = 1, name = “trafo1”, std_type = “0.4 MVA 10/0.4 kV”)
pandapower.create_transformer_from_parameters(net, hv_bus, lv_bus, sn_kva, vn_hv_kv, vn_lv_kv, vscr_percent, vsc_percent, pfe_kw, i0_percent, shift_degree=0, tp_side=None, tp_mid=<Mock name='mock.nan' id='140428840819960'>, tp_max=<Mock name='mock.nan' id='140428840819960'>, tp_min=<Mock name='mock.nan' id='140428840819960'>, tp_st_percent=<Mock name='mock.nan' id='140428840819960'>, tp_st_degree=<Mock name='mock.nan' id='140428840819960'>, tp_pos=<Mock name='mock.nan' id='140428840819960'>, in_service=True, name=None, index=None, max_loading_percent=<Mock name='mock.nan' id='140428840819960'>, parallel=1, **kwargs)

Creates a two-winding transformer in table net[“trafo”]. The trafo parameters are defined through the standard type library.

INPUT:

net - The net within this transformer should be created

hv_bus (int) - The bus on the high-voltage side on which the transformer will be connected to

lv_bus (int) - The bus on the low-voltage side on which the transformer will be connected to

sn_kva (float) - rated apparent power

vn_hv_kv (float) - rated voltage on high voltage side

vn_lv_kv (float) - rated voltage on low voltage side

vscr_percent (float) - real part of relative short-circuit voltage

vsc_percent (float) - relative short-circuit voltage

pfe_kw (float) - iron losses in kW

i0_percent (float) - open loop losses in percent of rated current

OPTIONAL:

in_service (boolean) - True for in_service or False for out of service

parallel (integer) - number of parallel transformers

name (string) - A custom name for this transformer

shift_degree (float) - Angle shift over the transformer*

tp_side (string) - position of tap changer (“hv”, “lv”)

tp_pos (int, nan) - current tap position of the transformer. Defaults to the medium position (tp_mid)

tp_mid (int, nan) - tap position where the transformer ratio is equal to the ration of the rated voltages

tp_max (int, nan) - maximal allowed tap position

tp_min (int, nan): minimal allowed tap position

tp_st_percent (int) - tap step in percent

index (int) - Force a specified ID if it is available

kwargs - nothing to see here, go along

* only considered in loadflow if calculate_voltage_angles = True

max_loading_percent (float) - maximum current loading (only needed for OPF)

OUTPUT:
trafo_id - The unique trafo_id of the created transformer
EXAMPLE:
create_transformer_from_parameters(net, hv_bus=0, lv_bus=1, name=”trafo1”, sn_kva=40, vn_hv_kv=110, vn_lv_kv=10, vsc_percent=10, vscr_percent=0.3, pfe_kw=30, i0_percent=0.1, shift_degree=30)

Input Parameters

net.trafo

Parameter Datatype Value Range Explanation
name string   name of the transformer
std_type string   transformer standard type name
hv_bus* integer   high voltage bus index of the transformer
lv_bus* integer   low voltage bus index of the transformer
sn_kva* float \(>\) 0 rated apparent power of the transformer [kVA]
vn_hv_kv* float \(>\) 0 rated voltage at high voltage bus [kV]
vn_lv_kv* float \(>\) 0 rated voltage at low voltage bus [kV]
vsc_percent* float \(>\) 0 short circuit voltage [%]
vscr_percent* float \(\geq\) 0 real component of short circuit voltage [%]
pfe_kw* float \(\geq\) 0 iron losses [kW]
i0_percent* float \(\geq\) 0 open loop losses in [%]
shift_degree* float   transformer phase shift angle
tp_side string “hv”, “lv” defines if tap changer is at the high- or low voltage side
tp_mid integer   rated tap position
tp_min integer   minimum tap position
tp_max integer   maximum tap position
tp_st_percent float \(>\) 0 tap step size [%]
tp_pos integer   current position of tap changer
max_loading_percent** float \(>\) 0 Maximum loading of the transformer with respect to sn_kva and its corresponding current at 1.0 p.u.
in_service* boolean True / False specifies if the transformer is in service.

*necessary for executing a power flow calculation
**optimal power flow parameter

Note

The transformer loading constraint for the optimal power flow corresponds to the option trafo_loading=”current”:

Electric Model

The equivalent circuit used for the transformer can be set in the power flow with the parameter “trafo_model”.

trafo_model=’t’:

../_images/trafo_t.png

trafo_model=’pi’:

../_images/trafo_pi.png

Transformer Ratio:

The magnitude of the transformer ratio is given as:

\begin{align*} n &= \frac{V_{ref, HV, transformer}}{V_{ref, LV, transformer}} \cdot \frac{V_{ref, LV bus}}{V_{ref, HV bus}} \end{align*}

The reference voltages of the high- and low voltage buses are taken from the net.bus table. If no tap changer is defined, the reference voltage of the transformer is taken directly from the transformer table:

\begin{align*} V_{ref, HV, transformer} &= vn\_hv\_kv \\ V_{ref, LV, transformer} &= vn\_lv\_kv \end{align*}

If a tap changer is defined, the reference voltage is multiplied with the tap factor:

\begin{align*} n_{tap} = 1 + (tp\_pos - tp\_mid) \cdot \frac{tp\_st\_percent}{100} \end{align*}

On which side the reference voltage is adapted depends on the \(tp\_side\) variable:

  tp_side=”hv” tp_side=”lv”
\(V_{n, HV, transformer}\) \(vnh\_kv \cdot n_{tap}\) \(vnh\_kv\)
\(V_{n, LV, transformer}\) \(vnl\_kv\) \(vnl\_kv \cdot n_{tap}\)

Note

The variables tp_min and tp_max are not considered in the power flow. The user is responsible to ensure that tp_min < tp_pos < tp_max!

Phase Shift:

If the power flow is run with voltage_angles=True, the complex ratio is given as:

\begin{align*} \underline{n} &= n \cdot e^{j \cdot \theta} \\ \theta &= shift\_degree \cdot \frac{\pi}{180} \end{align*}

Otherwise, the ratio does not include a phase shift:

\begin{align*} \underline{n} &= n \end{align*}

Impedances:

The short-circuit impedance is calculated as:

\begin{align*} z_k &= \frac{vsc\_percent}{100} \cdot \frac{1000}{sn\_kva} \\ r_k &= \frac{vscr\_percent}{100} \cdot \frac{1000}{sn\_kva} \\ x_k &= \sqrt{z^2 - r^2} \\ \underline{z}_k &= r_k + j \cdot x_k \end{align*}

The magnetising admittance is calculated as:

\begin{align*} y_m &= \frac{i0\_percent}{100} \\ g_m &= \frac{pfe\_kw}{sn\_kva \cdot 1000} \cdot \frac{1000}{sn\_kva} \\ b_m &= \sqrt{y_m^2 - g_m^2} \\ \underline{y_m} &= g_m - j \cdot b_m \end{align*}

The values calculated in that way are relative to the rated values of the transformer. To transform them into the per unit system, they have to be converted to the rated values of the network:

\begin{align*} Z_{N} &= \frac{V_{N}^2}{S_{N}} \\ Z_{ref, trafo} &= \frac{vn\_lv\_kv^2 \cdot 1000}{sn\_kva} \\ \underline{z} &= \underline{z}_k \cdot \frac{Z_{ref, trafo}}{Z_{N}} \\ \underline{y} &= \underline{y}_m \cdot \frac{Z_{N}}{Z_{ref, trafo}} \\ \end{align*}

Where the reference voltage \(V_{N}\) is the nominal voltage at the low voltage side of the transformer and the rated apparent power \(S_{N}\) is defined system wide in the net object (see Unit Systems and Conventions).

Result Parameters

net.res_trafo

Parameter Datatype Explanation
p_hv_kw float active power flow at the high voltage transformer bus [kW]
q_hv_kvar float reactive power flow at the high voltage transformer bus [kVar]
p_lv_kw float active power flow at the low voltage transformer bus [kW]
q_lv_kvar float reactive power flow at the low voltage transformer bus [kVar]
pl_kw float active power losses of the transformer [kW]
ql_kvar float reactive power consumption of the transformer [kvar]
i_hv_ka float current at the high voltage side of the transformer [kA]
i_lv_ka float current at the low voltage side of the transformer [kA]
loading_percent float load utilization relative to rated power [%]
\begin{align*} p\_hv\_kw &= Re(\underline{v}_{hv} \cdot \underline{i}^*_{hv}) \\ q\_hv\_kvar &= Im(\underline{v}_{hv} \cdot \underline{i}^*_{hv}) \\ p\_lv\_kw &= Re(\underline{v}_{lv} \cdot \underline{i}^*_{lv}) \\ q\_lv\_kvar &= Im(\underline{v}_{lv} \cdot \underline{i}^*_{lv}) \\ pl\_kw &= p\_hv\_kw + p\_lv\_kw \\ ql\_kvar &= q\_hv\_kvar + q\_lv\_kvar \\ i\_hv\_ka &= i_{hv} \\ i\_lv\_ka &= i_{lv} \end{align*}

The definition of the transformer loading depends on the trafo_loading parameter of the power flow.

For trafo_loading=”current”, the loading is calculated as:

\begin{align*} loading\_percent &= max(\frac{i_{hv} \cdot vn\_hv\_kv}{sn\_kva}, \frac{i_{lv} \cdot vn\_lv\_kv}{sn\_kva}) \cdot 100 \end{align*}

For trafo_loading=”power”, the loading is defined as:

\begin{align*} loading\_percent &= max( \frac{i_{hv} \cdot v_{hv}}{sn\_kva}, \frac{i_{lv} \cdot v_{lv}}{sn\_kva}) \cdot 100 \end{align*}