Shunt¶
See also
Create Function¶
-
pandapower.
create_shunt
(net, bus, q_kvar, p_kw=0.0, name=None, in_service=True, index=None)¶ Creates a shunt element
- INPUT:
net (pandapowerNet) - The pandapower network in which the element is created
bus - bus number of bus to whom the shunt is connected to
p_kw - shunt active power in kW at v= 1.0 p.u.
q_kvar - shunt susceptance in kVAr at v= 1.0 p.u.
- OPTIONAL:
name (str, None) - element name
in_service (boolean, True) - True for in_service or False for out of service
- OUTPUT:
- shunt id
- EXAMPLE:
- create_shunt(net, 0, 20)
Input Parameters¶
net.shunt
Parameter | Datatype | Value Range | Explanation |
name | string | name of the shunt | |
bus* | integer | index of bus where the impedance starts | |
p_kw* | float | \(\geq\) 0 | shunt active power in kW at v= 1.0 p.u. |
q_kvar* | float | shunt reactive power in kvar at v= 1.0 p.u. | |
in_service* | boolean | True / False | specifies if the shunt is in service. |
*necessary for executing a power flow calculation.
Electric Model¶

The power values are given at \(v = 1 pu\) or \(V = V_{N}\):
\begin{align*}
\underline{S}_{shunt, ref} &= p\_kw + j \cdot q\_kvar
\end{align*}
Since \(\underline{S}_{shunt, ref}\) is the apparent power at the nominal voltage, we know that:
\begin{align*}
\underline{S}_{shunt, ref} &= \frac{\underline{Y}_{shunt}}{V_{N}^2} \\
\underline{Y}_{shunt} &= \frac{\underline{S}_{shunt, ref}}{V_{N}^2}
\end{align*}
Converting to the per unit system results in:
\begin{align*}
\underline{y}_{shunt} &= \frac{\underline{S}_{shunt, ref}}{V_{N}^2} \cdot Z_{N}\\
&= \frac{\underline{S}_{shunt, ref}}{V_{N}^2} \cdot \frac{V_{N}^2}{S_{N}} \\
&= \frac{S_{shunt, ref}}{S_{N}}
\end{align*}
with \(S_{N} = 1 \ MVA\) (see Unit Systems and Conventions).
Result Parameters¶
net.res_shunt
Parameter | Datatype | Explanation |
p_kw | float | shunt active power consumption [kW] |
q_kvar | float | shunt reactive power consumption [kVAr] |
vm_pu | float | voltage magnitude at shunt bus [pu] |
\begin{align*}
p\_kw &= Re(\underline{v}_{bus} \cdot \underline{i}_{shunt}) \\
q\_kvar &= Im(\underline{v}_{bus} \cdot \underline{i}_{shunt}) \\
vm\_pu &= v_{bus}
\end{align*}